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HOf4OGENEOUS SOLUTIONS OF THE FRUBlEH OF STEADY VlBRATZONS 
OF A PIEZOCERAMIC CYLINDER* 

A.A. MATROSOV and YU.A. USTINOV 

Steady vibrations of a hollow piezoceramic cylinder with radial polarization 
are considered. An analytical and numerical analysis is performed of the 
homogeneous solutions, and the behaviour of the dispersion curves of the 
real and complex modes is investigated as a function of the geometrical 
parameters. 

Wave propagation in a solid cylinder of electraelastic material with axial polarization 
was investigated earlier /l/ by the method of homogeneous solutions. Plane problems of the 
vibrations of piezoceramic cylinders with different types of polarization were examined in 

/2, 3/. Using a variational method, the vibrations of a finite cylinder were considered in 
/4i. 

1. We consider steady axisymmetric vibrations of a piezoceramic cylinder polarized along 
the radius. The cylinder inner radius is rl, the outer radius is r:, and the length of the 
generatrix is 21. 

We introduce the r. cp, Z cylindrical coordinate system by directing the z axis aLong the 
cylinder axis. 

We shall assume that the material properties are described by the following relationships 
/S/: 

Q= = &s,-+&ss+ 8,)-&S,, E E Jss= Cl.@,+ CnFrn -f- &- %S, (1.11 

a-3 B E c@, -I- C& f & - wq 3 Jrp = 2&,, - 4, 

D, = ~13 (e, f f& 4- es, + ~2, * Dz = %SE~ 5 @, 

a”, E*=z, 
“I 8% 1 aa 

em=-;-, ez=x. 5,.= +f+%) 

Here 41 are the stress tensor components, uI,+Dk, Ek are displacement vector components, 

electrical induction, and electric field strength, respectively, CfE are the elastic moduli, 

91 the piezomoduli, and afj the permittivities. 
Adding the equations of motion 

and the equations of forced dielectric electrostatics 

div D = 0, rot E = 0 

to (1.11, we obtain the closed system of equations 

(,-%* + r-%L, - a'& + P%,)v = 0 

Here 
s = s(z) c'('=+, ~1 = q(r) ei(r-t) 

4= iIn r 
.3 -;;;' 

9 is the electric field potential associated with the intensity vector by means of the 

relationship E= --grad*, k is the wave number, o is the vibration frequency, p is the density, 
and fg, to are certain characteristic parameters of the material which are of dimensionality 

c$* IE I. To simplify the writing, we omit the asterisk. 
The matrix operators have the following form: 

- 
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caJa? - e+,, 0 
Lo = 0 c,,* 

c&qa’ + Eelsa 0 

LI = I 
0 h + 4 a + e (cls - 4 0 

cl1 + 4 a + e (cl2 + ~3 0 (en + 4 a + ‘%I 
0 (em + 4 a + ~h 0 

We shall consider the side surfaces of the cylinder to be stress-free 
trodes thereon 

(eeeEMO +iaM,)v &.I = 0 

and without elec- 

(1.3) 

The dispersion curves of problem (1.2), (1.3) are constructed below by numerical methods. 

2. We turn firsttoananalytical studyof the spectral problem (1.2), (1.3) under the 
assumption that the parameter e characterizing the cylinder thic,kness is sufficiently small. 

We start the investigation with the static case n = 0. Omitting intermediate calculations, 
we give a brief description of the spectrum. 

In the nature of their behaviour in e the set of eigenvalues can be separated into three 
groups. The first group consists of a double eigenvalue a(l)== 0. An eigenvector of the follow- 
ing from corresponds to it: v(l)= col(0, A,. A,} (A,, A, are arbitrary constants). 

The second group consists of four zeros which tend to zero as e-0. The first terms of 
their asymptotic expansion have the form 

We write down the first term of the expansion in E for the eigenvector v(*)=col(A,O,O) (A 
is an arbitrary constant) s 

The third group of eigenvalues consists of a countable set of roots +z,@) (j=O,i,...), with 

the following asymptotic representation: CL?)= fi,+O(e), where BJ are the eigenvalues of the 

corresponding spectral problem for a strip (layer) investigated in detail in /6, 7/. 
The first group of eigenvalues determines the penetrating solution , whose state of stress 

and strain is equivalent to the principal vector of the forces P acting in the transverse 
section. It can be shown that if P=O, the corresponding solution vanishes. 

The state of stress and strain corresponding to the second group has the nature of an edge 
effect inherent in thin shells, and is equivalent to the action of a bending moment and a 
transverse force in the transverse section. 

The state of stress and strain in the third group has the nature of a boundary layer 
localized at the cylinder endfaces. 

3. We will now investigate the spectrum of problem (1.2), (1.3) for small cz and R. in 
analysis performed on the structure of the static problem spectrum enables the form of the 
analytical expansions in Q to be determined for different groups of zeros. 

The eigenvalues corresponding to the first group can be sought in the form 

cc= nt,+..., ” = vg + Pv, + . . . (3.1) 

Substituting expansion (3.1) into (1.2) and (1.3) we obtain a certain recursion system, 
which when integrated yields 

(3.2) 

(b,. b,. ,. b. depend on the constants of the material 
the awkwardness of their expressions, and 

, which are not presented here because of 

The relationships (3.1)', 
B,, B? D,, D, are arbitrary constants). 

(3.2) describe the beginning of the first dispersion curve in 
the neighbourhood of the point cr=O,~= O. 

The beginning of the remaining dispersion curves is determined from the condition a=O. 
The determinant of the boundary conditions is here decomposed into two transcendental equations 
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containing Bessel and Weber functions: 

I, (qeyY* (se-e) -II1 (qe-e)Y*(qee)= 0 

I 
S"?e 

I, (are) - m Iv+l(see) 1 I’ (se-e) - _ 
1 v 

Se-E y 
iiv $- I 

\+l (Se-E) 1 - 

, I, (Se-E) - Qe-e 
kv+l I,+1 WI ’ Y, (SeE) - &Yy+* (SC)] = 0 

R 9"-_=, +( h 
e f/s, C3s%73+4 

+, )i=.;1 1 

The two sets of roots obtained determine the initial points of the real curves on the R 
axis. The values of 0 corresponding to these points are the resonance frequencies of radial 
vibrations of an ininfite cylinder. 

We examine the behaviour of the dispersion curves for ct and Q tending to infinity. We 
assume that the limit of their ratio remains a constant, i.e ., lim R/a= cons as or-oo,Q-DJ. 
We convert problem (1.2), (1.3) to the form 

(P'~e-*~t~,, + e-%PL, - L, + c*L,) Y = o (3.3) 
(pc'EEMM, + iM,) v 1 _ E-*1 = 0; p = l/a, c2 = Wd 

where C is a new spectral parameter corresponding to the wave propagation phase velocity. 
Evidently p-0 as ~-CO, i.e., I( is a small parameter. From the mechanics viewpoint, this 
corresponds to the case when the wavelength is considerably less than the thickness of the 
cylinder under consideration. 

M.I. Vishik and L.A. Liusternik developed general methods for solving such problems, 
which consist of performing two iterations. To construct the internal solution, we execute 
the first iteration. Using the expansions 

"=Vp+PVl+,... cs = c$+ PC,'+ . (3.4) 

we obtain a recurrent system. Its analysis shows that wave propagation is possible with two 
phase velocities 

We will now investigate problem (3.3) on the basis of the second iteration process. To 
do this, we stretch the scale in the neighbourhood of the boundary by introducing a new 
variable. The first stage of the iteration process yields 

(&+L,+L*+ca%)v=o, (M,-tMl)V (O)==O 

This boundary value problem together with the additional condition of the solution 
decreasing at infinity describes a wave propagati.ng along a free surface; C, is its phase 
velocity determined numerically. 

4. We will present some results of a numerical analysis of problem (1.2), (1.3). 
The investigation was performed for cylinders made of PZT-4 material which has first been 

polarized in the radial direction. The piezoceramic moduli are /8/ 

CllE = 13.9, C,?E = 1.78, elaE = 7.43, C18 E = 11.5, CUE = 2.56, 

eat = -5.2, eltt = 15.1, elll = 12.7, e,,s/e,s = 730, esSsle,s = 635. 
2 [cay] = iOl@N/m, [ei,] = 2 K/m , e,,’ = 8.85.10-12 @/m,p = 7.5.108 kg/m 

3 

Cylinders with e = 1.151; e = 0.053; e = 0.001 were examined. 
The set of dispersion curves u(Q) was divided into two parts, real and complex, in a 

numerical analysis whose basis was Godunov's method /9/ of orthogonal factorization. The pure 

imaginary eigenvalues a were also referred to the complex. Godunov's method in conjunction 

with the argument method was used to find the complex zeros. 
Dispersion curves for the cylinders with e= 1.151 (Fig.1) and ~=0.053 (Fig.2) are 

represented in the graphs. The dispersion curves for e=0.001 and e= 0.053 are practically 

coincident, with the exception of a small neighbourhood of the origin. Therefore, for e< 0.08 

the curvature of the cylindrical surfaces exert no substantial influence on the strucutre of 
the curves. 

The real and pure imaginary values of a are superposed by solid lines on the graphs, where 
the pure imaginary roots are laid off to the left of the origin. The real and imaginary parts 

of the complex branches are superposed by dashes; here OX is the axis of real values of a 
and OY is the axis of imaginary values of 0~. Values of the dimensionsless frequency Q are 
plotted along the OZ axis. 

For a fixed value of Q the complete solution for a finite cylinder can be represented 
in the form 



v = f: AjVj (c;) e’ 
ea 

‘(njK-Q7) + x Bkuk (f) e 
i (ak.-QT) 
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(4.1) 
j=1 k=, 

where tlk are complex eigenvalues, Q = RX‘,,.> o,v,, are the corresponding eigenvectors, and 

Aj. S, are arbitrary constants determined when the boundary conditions on the endfaces are 

satisfied. 

8 4 0 G Imd Y n 4 6 

Fig.1 Fig.2 

The first sum determines the penetrating solution. Real dispersion curves on the graphs 
correspond to it. The second sum determines the boundary layer solution localized at the 
cylinder endfaces. The dispersion curves from the left half-planes of the graphs correspond 
to it. It is seen that the complex roots can have a small imaginary part for certain 9. In 
this case the corresponding homogeneous boundary layer solutions can exert a singificant 
influence on the state of stress and strain in the inner part of the cylinder. 

In the case of an infinite cylinder, there is no second sum in (4.1), and the first 
describes a wave propagating in the cylinder. The number of such waves is determined by the 
quantity R and the presence of vibrations sources at infinity. If the sources are arranged 
for L---m, then only % > 0 are taken, if there are still sources at C-~-CO, then the 
summation is over all ah, both positive and negative. 

The dash-dot lines in the graphs denote the asymptotic values from (3.11, which approxi- 
mate the first dispersion curve well for low frequencies. 

In the high-frequency case and short wavelengths compared with the cylinder thickness, 
the dispersion curves emerge on the asyptote (3.4). The phase velocity for the first curve 
tends to the surface-wave phase velocity, and to the shear wave velocity for the remaining 
curves. 
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